MÔN GIẢI TÍCH
Bài 1. Cho $P(x)$ là đa thức bậc $n$ thỏa mãn điều kiện $ \int_0^1 x^kP(x) \, \mathrm{d}x = 0, \quad k=1,2,\ldots,n $. Chứng minh rằng $$ \int_0^1 \big( P(x) \big)^2 \, \mathrm{d}x = (n+1)^2 \left( \int_0^1 P(x) \, \mathrm{d}x \right)^2 $$
Bài 2. Cho hàm số $f$ khả vi liên tục trên đoạn $[0,1]$ sao cho $f(0)=0,f(1)=1$ và $\big| f'(x) \big| \le 2$ với mọi $x \in [0,1]$. Chứng minh rằng $$ \int_0^1 f(x) \, \mathrm{d}x > \frac{1}{8} $$
Bài 3. Cho dãy số thực $\{a_n\}$ thỏa mãn điều kiện $$ \lim_{n \to \infty} (2a_{n+1}-a_n) = 2012 $$
Chứng minh rằng dãy số $\{a_n\}$ hội tụ.
Bài 4. Cho hai hàm số $f$ và $g$ xác định và liên tục trên đoạn $[0,1]$. Giả sử có tồn tại dãy số $\{x_n\}$ trong đoạn $[0,1]$ sao cho $f(x_n)=g(x_{n+1})$ với mọi $n \in \mathbb{N}$. Chứng minh rằng tồn tại một điểm $\alpha \in [0,1]$ sao cho $f(\alpha) = g(\alpha)$.
Bài 5. Tìm một hàm số $f$ khả vi liên tục trên $\mathbb{R}$ thỏa mãn các điều kiện sau:
- $f(\mathbb{Q}) \subset \mathbb{Q}$ với ( $\mathbb{Q}$ là tập các số hữu tỉ);
- $f(\mathbb{R} \backslash \mathbb{Q}) \subset \mathbb{R} \backslash \mathbb{Q}$;
- $f'$ không là hàm hằng.
MÔN ĐẠI SỐ
Câu 1:
a/ Cho $p$ là một số nguyên tố, $\zeta _{p}=cos(\frac{2\pi }{p})+isin(\frac{2\pi}{p}) \in \mathbb{C}$ là một căn nguyên thủy bậc $p$ của đơn vị. Giả sử $\mathbb{Q}(\zeta _{p})={f(\zeta _{p})}$ với $f(X)$ là đa thứ có hệ số hữu tỷ. Chỉ ra rằng $\mathbb{Q}f(\zeta _{p})$ là một không gian vectơ con (trên $\mathbb{Q}$) của $\mathbb{C}$, và tính số chiều của $\mathbb{Q}f(\zeta _{p})$ xem như một $\mathbb{Q}$ - không gian vectơ.
b/ Trong trường hợp tổng quát, không giả thiết n là số nguyên tố, hãy dự đốn số chiều của $\mathbb{Q}f(\zeta _{n})$ xem như một $\mathbb{Q}$ - không gian vectơ.
Câu 2:
Cho một đa thức $P(x)$ bậc n hệ số thực với hệ số của bậc cao nhất là 1. Hãy tìm một ma trận $n\times n$ hệ số thực có đa thức đặc trưng bằng $P(x)$.
Câu 3:
Với mỗi ma trận vuông A, ta định nghĩa:
$$sinA=\sum_{n=0}^{\infty }\frac{(-1)^n}{(2n+1)!}A^{2n+1}$$
Tồn tại hay không một ma trận vuông cấp 2 hệ số thực sao cho:
$$sinA=\bigl(\begin{matrix} 1 &2012 \\ 0&1 \end{matrix}\bigr)$$
Câu 4:
Xét dãy số $(x_n)$ thỏa mãn: $x_{n+2}=ax_n+bx_{n+1}$ với $a,b$ là các hằng số. Đặt $A_n=\bigl(\begin{matrix} x_{n}\\x_{n+1} \end{matrix}\bigr)$. Khi đó:
$$A_{n+1}=\bigl(\begin{matrix} 0 &1 \\a &b \end{matrix}\bigr)A_n$$
Hãy viết $A_n$ theo $A_1$, với gợi ý đó hãy tìm công thức tính số hạng tổng quát của dãy Fibonacci.
--------------HẾT--------------
No comments:
Post a Comment